Подход к изучению веществ. Методы исследования вещества Физические методы исследования строения вещества

82 83 84

Раздел 4.

Методы и технические средства криминалистического исследования структуры и иных свойств веществ и материалов

Представляется целесообразным одновременно рассмотреть методы проведения фазового анализа веществ и изучения их структуры, поскольку фазовый состав и структура связаны между собой и некоторые методы их исследования совпадают. В КИВМИ структура и фазовый состав преимущественно изучаются в металлографии и рентгенографии.


Рис. 29. Система методов исследования фазового состава веществ и материалов

4.1.

МЕТОДЫ ИССЛЕДОВАНИЯ ФАЗОВОГО СОСТАВА ВЕЩЕСТВ И МАТЕРИАЛОВ В КРИМИНОЛОГИИ

Методы исследования фазового состава веществ и материалов предназначены для установления качественного и количественного содержания фаз, имеющих одинаковый и различный химический состав (рис. 29).

Металлографический анализ

Раздел материаловедения, изучающий изменения макро- и микроструктуры металлов и сплавов в связи с изменением их химического состава и условий обработки называется металлографией. Описание металлографического анализа было приведено выше (в разделе 3.1. «Методы и технические средства криминалистического морфоанализа веществ и материалов»).

Изучение металлографических шлифов позволяет определить структуру металла, наблюдать в поле зрения микроскопа различные фазы, которые могут окрашиваться в различные цвета. Это позволяет выяснить такие важные обстоятельства, как особенности технологии обработки изделия (ковка, термическая обработка и т.д.), температуру разогрева образца и момент происшествия, например, при пожаре и т.д. Так, например, металлографическим анализом можно установить, в какой атмосфере, бедной или богатой кислородом, произошло расплавление проводов в момент короткого замыкания. В свою очередь, установление этого обстоятельства имеет значение для решения вопроса о том, явилось ли короткое замыкание причиной пожара или возникло в его результате.

Металлографический анализ позволяет оценить количественное содержание включений в шлифе и весьма нагляден. Однако данный метод исследования является разрушающим и по точности уступает рентгенофазовому анализу.

Рентгеноструктурный фазовый анализ

Ренгенофазовый анализ - метод определения фазового состава твердых кристаллических и некоторых аморфных веществ. Каждое кристаллическое вещество имеет строго индивидуальную геометрию кристаллической решетки, которая характеризуется набором межплоскостных расстояний. При прохождении рентгеновских лучей через кристалл возникает дифракционный эффект. Дифракционная картина осуществляется либо в фотографическим способом в специальных камерах на рентгеновскую пленку, либо с использованием рентгеновских дифрактометров с помощью электронных регистрирующих систем.

Для решения вопроса о фазе, присутствующей в пробе, нет необходимости определять ее кристаллическую структуру. Достаточно рассчитать дифрактограмму (рентгенограмму) и сравнить полученный ряд межплоскостных расстояний и относительных интенсивностей линий с приведенными в картотеках рентгенометрических данных, наиболее полная из которых - постоянно обновляемый американский определитель фаз - картотека Joint Committee on Powder Diffraction Standards (JCPDS).

Наличие на рентгенограмме (дифрактограмме) тех или иных линий характеризует качественный фазовый состав пробы. Смесь нескольких индивидуальных химических соединений дает рентгенограмму, представляющую собой наложение дифракционных эффектов, характеризующих отдельные фазы. При сравнении межплоскостных расстояний образцов и эталонов зачастую приходится анализировать очень большие информационные массивы, поэтому обработка данных производится на ПЭВМ с использованием автоматизированных систем и баз данных.

Рентгенофазовый анализ используется для исследования таких объектов КИВМИ, как металлы и сплавы, лекарственные препараты, вещества почвенного происхождения, бумага, парфюмерно-косметические изделия, лакокрасочные материалы и покрытия и пр.

Калориметрический анализ

Калориметрия - группа методов измерения тепловых эффектов (количества теплоты), сопровождающих различные физические, химические и биологические процессы. Калориметрия включает в себя измерение теплоемкости, теплоты фазовых переходов, тепловых эффектов намагничивания, электризации, растворения, химических реакций (например, горения). Приборы, применяемые в калометрии, называются калориметрами.

Методы термографии используются, например, при исследовании полимеров. Они позволяют определять типы полимеров, состав их смесей и сополимеров, марки некоторых полимеров, наличие и состав специальных добавок, пигментов и наполнителей, признаки, обусловленные технологией синтеза и переработки полимеров в изделия, а также условия эксплуатации последних. Однако более эффективным является совмещение термографического и газохроматографического методов анализа.

Термические методы анализа

Термические методы анализа - методы исследования физико-химических и химических процессов, основанные на регистрации тепловых эффектов, сопровождающихся в условиях программирования температуры. Установка для термических методов анализа обычно включает печь, держатели образцов, термопары, измеряющие температуру в печи и образцов. При нагревании или охлаждении образца фиксируются изменения температуры объекта во времени. В случаях фазовых превращений на кривой нагревания (охлаждения) появляется площадка или излом.

Термогравиметрический анализ (ТГА) основан на регистрации изменения массы образца в зависимости от температуры в условиях программированного изменения температуры среды.

При дифференциальном термическом анализе (ДТА) производится регистрация во времени изменения разности температур между исследуемым образцом и образцом сравнения, не претерпевающим в данном интервале температур никаких превращений. Эффекты, регистрируемые ДТА, могут быть обусловлены плавлением, возгонкой, испарением, кипением, изменением кристаллической решетки, химическими превращениями.

4.2. МЕТОДЫ ИССЛЕДОВАНИЯ СТРУКТУРЫ ВЕЩЕСТВ И МАТЕРИАЛОВ В КРИМИНОЛОГИИ

В зависимости от происхождения, технологии получения или условий эксплуатации одни и те же вещества или материалы могут иметь различную структуру. Например, закалка или отпуск стали не изменяют ее состава, но изменяют структуру, вследствие чего меняются ее механические свойства (твердость, упругость и т.д.).

Как уже отмечалось, для исследования кристаллической структуры веществ и материалов чаще всего используются металлографический и рентгеноспектральный анализы. Описание металлографического анализа приведено выше, поэтому остановимся на рентгеноструктурном анализе.

Физической основой метода является специфический характер взаимодействия рентгеновского излучения с веществами, имеющими упорядоченную структуру. Термические и механические воздействия на материалы и изготовленные из них изделия (особенно из металлов и сплавов) приводят к появлению остаточных макронапряжений, вызывающих, в свою очередь, деформацию кристаллической решетки. Эта деформация регистрируется в ходе рентгеноструктурных исследований в виде сдвига линий на дифрактограммах и рентгенограммах. При отжиге же металлов и сплавов отмечается снятие остаточных напряжений, рекристаллизация, рост зерен, что ведет к изменению местоположения, формы и ширины рентгеновских линий. Кроме того, разогрев металла приводит к образованию окалины на поверхности изделия, наличие которой регистрируется на рентгенограмме (дифрактограмме) в виде появления дополнительных линий.

Изучение органических веществ преследует цель установления строения вещества, его пространственной структуры и основных характеристик, исследование скоростей и механизмов реакции. Ввиду огромного числа разнообразных органических соединений нельзя выработать единую схему анализа, как часто делается в неорганическом количественном анализе. И все же систематическое исследование позволяет достаточно надежно и быстро идентифицировать органическое вещество.
Установление строения органического вещества – это главная цель их изучения вне зависимости от метода исследования. Однако интересы, связанные с исследованием того или иного органического соединения, уже имеют разный характер. Особенную важность имеют вопросы, касающиеся природных ресурсов нашей планеты. Мы знаем, что особенное значение для человечества имеют источники нефти и газа, но они ограничены. Поэтому назрела проблема поисков нового сырья для органического и нефтехимического синтеза, получения нефти и газа искусственным путем. Но это лишь одна из причин изучения органических веществ. Если посмотреть вокруг, то все живое на Земле это органическая химия. Соответственно, изучение органических веществ это ключ к глобальным открытиям в области живой природы, возможность узнать все процессы жизнедеятельности, найти пути излечения многих страшных заболеваний, создавать самим живые материи и т.д.

Методов исследования органических веществ большое множество. В зависимости от используемых приборов, использования определенных характеристик органических соединений и принципов работы, их можно классифицировать и выделить основные методы:
- простейшие методы изучения: очистка органических веществ (кристаллизация, возгонка, перегонка, хроматография, гель-фильтрация, электрофорез) и анализ органических веществ (количественный и качественные элементные анализы);
- физико-химические методы: рефрактометрия, калориметрия, измерение электрических дипольных моментов, рентгенография и электронография, электрохимические методы (полярография, анодная вольтамперометрия), спектроскопия (фотоэлектронная, масс-спектроскопия, инфракрасная и т.д.)

Простейшие методы исследования органических веществ.

1.Очистка органических веществ.
Органические вещества, встречающиеся в природе, а также получающиеся в лабораториях и на химических заводах, обычно представляют собой смеси нескольких органических соединений. Компонентами смеси могут быть и неорганические вещества (соли, вода и др.). Для оценки чистоты вещества выбирают такие физико-химические характеристики, которые меняются в зависимости от степени его чистоты и являются постоянными для чистого индивидуального вещества.
Для характеристики чистоты вещества используют следующие константы и методы: температура плавления, температура кристаллизации, температура кипения, коэффициент преломления света, плотность, данные спектров поглощения (коэффициент интенсивности поглощения в электронных и инфракрасных спектрах), данные спектров ядерного магнитного резонанса (ЯМР), масс-спектрометрии, хроматографический анализ, люминесцентный анализ и др.
Получить чистое вещество – означает разделить данную смесь веществ на индивидуальные вещества, очистить до желаемой степени чистоты. Здесь необходимо различать две совокупности методов: методы разделения смеси на компоненты, которые еще не являются чистыми, и методы конечной очистки.
Говоря о чистоте химических веществ, нужно отдавать себе отчет в том, что абсолютно чисто вещество можно представить только теоретически. Абсолютно чистых веществ нет и быть не может. В зависимости от методы очистки вещество содержит определенное количество примесей. Обычными методами очистки можно достичь содержания основного вещества 99,9…99,95%. Специальными методами глубокой очистки можно уменьшить содержание примесей для органических веществ до 10-3….10-4%

2.Кристаллизация.
Кристаллизация является классическим методом очистки кристаллических веществ. Метод основан на том, что разные вещества имеют разную растворимость в определенном растворителе, причем понижение температуры (за редким исключением) приводит к уменьшению растворимости веществ. Фильтрованием горячего раствора отделяют нерастворимые примести, и после охлаждения вещество выделяется из раствора в виде кристаллов. Повторные перекристаллизации обычно уменьшают количество примесей. Вариантом метода является кристаллизация из расплава. Специальный вариант – зонная плавка – применяется для глубокой очистки веществ.
Например: нам необходимо очистить салициловую кислоту от примесей. Для этого мы берем взвешенную предварительно массу этой кислоты и рассчитываем необходимый обьем растворителя – воды, для того, чтобы получить насыщенный раствор, который впоследствии можно будет кристаллизировать.
3.Возгонка (Сублимация)
Многим кристаллическим веществам свойственна способность к возгонке, т.е. к переходу в газовую фазу, минуя жидкую, с последующей кристаллизацией из газовой фазы. Этот метод позволяет отделить сублимирующиеся вещества от несублимирующихся примесей и разделить смесь веществ с разными температурами сублимации или температурами кристаллизации из газовой фазы (градиентная возгонка). Если вещества возгоняются трудно и при высоких температурах разлагаются, применяют возгонку в вакууме или высоком вакууме – до 0,0013 Па (10-5 мм рт.ст.; 1 мм рт.ст.=133,3 Па). Высоковакуумная возгонка в различных вариантах применяется для глубокой очистки.
Очистка твердого вещества возгонкой возможна только в том случае, если давление его паров выше, чем давление паров примесей. Когда давление паров твердого вещества соответствует приложенному давлению получают наилучшие результаты.
Например: Е-стильбен возгоняют при температуре 100оС и давлении 20 мм рт. ст.
4.Перегонка (дистилляция)
Для многих низкоплавких веществ и большинства жидкостей хорошим методом очистки является
Фракционная перегонка при условии, что разница в температурах кипения компонентов смеси достаточно велика и не образуются азеотропные смеси. Селективность (эффективность) фракционной перегонки можно увеличить специальными приспособлениями: дефлегматорами, дистилляционными колоннами и др. Для высококипящих веществ применяется вакуумная перегонка. Вариантом метода является перегонка двухкомпонентных систем, которые при охлаждении расслаиваются, например перегонка с водным паром: лимонен (т.кип. 178оС при 760 мм рт. ст.) перегоняется с водой (т.кип. 100оС при 760 мм рт. ст.) при температуре 98оС. При этом количественное соотношение в дистилляте (в граммах) лимонен: вода составляет 1: 1,54.

5.Хроматография
Методы хроматографического разделения основываются на различной способности веществ адсорбироваться на поверхности сорбента или распределяться между двумя несмешивающимися фазами (жидкость-жидкость, жидкость-газ), из которых одна фаза (жидкая) находится на поверхности сорбента. Поэтому различают разные виды хроматографии, а именно: жидкостную адсорбционную и распределительную хроматографию, газовую хроматографию.
Жидкостная адсорбционная хроматография основана на различной способности веществ сорбироваться на поверхности сорбента и десорбироваться при пропускании растворителя – элюента. В Качестве сорбентов применяют оксид алюминия, кремниевую кислоту и диоксид кремния (силикагели), гранулированные полисахариды (декстраны) или другие полимеры, которые в растворителе набухают, образуя гранулированный гель (гель-хроматография).
Жидкостная распределительная хроматография является разновидностью адсорбционной хроматографии, в которой сорбент (носитель) покрыт тонкой пленкой какой-то жидкости. Элюентом обычно является растворитель, который не смешивается с жидкостью на сорбенте. При пропускании элюента происходит распределение веществ между жидкой фазой и элюентом. Этот вид хроматографии наиболее пригоден для разделения веществ, хорошо растворимых в воде или способных образовывать растворимые в воде соли. К таким веществам относятся сахар, аминокислоты, многие органические красители, большая часть алкалоидов, моно- и поликарбоновые кислоты, спирты и т. д.

Пример жидкостной хроматографии смеси стандартов синтетических фосфолипидов (1) и образца грубого липддного экстракта из клеточной мембраны эритроцитов человека(2) на нормально фазной колонке при детектировании лазерным светорассеивающим детектором.НЛ – нейтральные липиды; ФЭ – фосфатидилэтаноламин; ФС – фосфатидилсерин; ФХ – фосфатидилхолин; СМ – сфингомиелин.
Газовая хроматография применяется для разделения смесей газообразных или легкоиспаряемых жидких и твердых веществ. Принцип метода подобен жидкостной хроматографии. Разделяемую смесь разбавляют газом-носителем (H2, N2, He) и вводят в адсорбционные колонны. Газ-носитель является одновременно растворителем и элюентом. В качестве сорбентов используют тонкие порошки силикатных материалов, которые могут быть чистыми (газо-адсорбционная хроматография) или покрытыми пленкой нелетучей жидкости (газо-жидкостная хроматография). Используют также капилляры, покрытые внутри пленкой нелетучей жидкости (капиллярная хромотография). Газ-носитель постепенно десорбирует компоненты смеси и уносит с собой. Присутствие органических веществ в газе-носителе и их количество обнаруживается при помощи специальных детекторов и фиксируется самописцем. В препаративной хроматографии газ-носитель затем пропускают через специальные приемники, в которых органические вещества улавливают вымораживанием.
Этим методом можно достичь полного разделения смеси. При использовании адсорбционных колонн повышенной мощности метод применяется как препаративный для разделения небольших количеств веществ (1….10 г).

Пример газовой хроматографии: скоростной анализ паров взрывчатых веществ на поликапиллярной колонке при температуре 170°С.
Поликапиллярная колонка длиной всего 22 см позволяет за 2.5 минуты обнаружить и идентифицировать следовые количества паров взрывчатых веществ: 1 - 2,6-динитротолуол, 2 - 2.4-динитротолуол. 3 - 2,4,6-тринитротолуол, 4 - 3,4,5-трининитротолуол, 5 - 2.3,4-тринитротолуол, 6 - гексоген. 7 - тетрил.

Мы рассмотрели так подробно вопрос о формировании понятий о химических явлениях потому, что это, как мы указали выше, ключ к успешному формированию понятий о веществах и химических элементах. В ряду химических понятий - химическая реакция, вещество, химический элемент - каждое предыдущее составляет основу для формирования последующего. Поэтому все условия, определяющие успех формирования понятий о химических реакциях, сохраняют свою силу и при формировании понятий о веществах и химических элементах. Вместе с тем при формировании этих понятий огромное значение приобретает ряд новых обстоятельств. Сначала мы рассмотрим эти обстоятельства применительно к формированию понятий о веществах, а потом о химических элементах.

Среди условий, определяющих успех формирования понятий о веществах, одним из решающих является правильный подход к изучению их. Этот подход не остается неизменным: он все более расширяется и углубляется по мере овладения теоретическими знаниями и обобщениями.

В VII и VIII классах большинство веществ изучается по следующему плану: химический состав, физические свойства (агрегатное состояние, цвет, запах, вкус, удельный вес и др.), отношение вещества к воде, химические свойства (отношение к простым веществам, к окислам, основаниям, кислотам и солям, к нагреванию, к электрическому току), физиологическое действие (в отдельных случаях), сходство по свойствам с другими веществами и отличие от них, применение веществ в промышленности, в сельском хозяйстве, в быту, нахождение в природе и способы получения.

Конкретность образующихся при этом понятий о веществах зависит главным образом от того, какие химические свойства (химические реакции веществ) изучаются. Изучение химических свойств металлов ограничивается рассмотрением отношения их к кислороду и к кислотам; изучение неметаллов - отношением их к кислороду (для углерода, серы и фосфора). Окислы металлов рассматриваются в отношении к водороду, окиси углерода, к кислотам и щелочам; основания - в отношении к кислотам, кислотным окислам и солям; кислоты - в отношении к металлам, окислам металлов, основаниям и солям. Отбор только этих химических реакций для характеристики химических свойств металлов и неметаллов, окислов, оснований, кислот и солей обусловливается тем, что это доступные пониманию и жизненно важные реакции. Истолкование сущности химических реакций производится с точки зрения атомно-молекулярного учения. Этим определяется глубина изучения их.

Важным моментом, характеризующим химическую природу веществ, является получение их. Однако в VII-VIII классах изучается получение немногих веществ: кислорода, водорода, углекислого газа, окиси углерода - и изучаются общие способы получения кислот, щелочей и солей. Это сделано потому, что получение многих веществ (например, серной и азотной кислот и т. д.) при отведенном для химии в восьмилетней школе времени и установленном объеме учебного материала является весьма сложным и недоступным. Ознакомление с получением веществ- задача IX-XI классов. В курсе химии для восьмилетней школы упор сделан на ознакомление учащихся с химическим составом, физическими и химическими свойствами и применением веществ.

Как ни узок круг знаний, приобретаемых в VII-VIII классах, он все же создает основу для предвидения свойств веществ. Так, опираясь на знания, приобретаемые в VII-VIII классах, учащиеся могут предсказывать:

а) химический состав окислов металлов, оснований и солей (соляной, серной, азотной кислот), весовой состав этих соединений, весовое содержание определенного элемента в определенном количестве вещества;

б) химические реакции окислов, кислот, оснований и солей и весовые отношения, в которых реагируют эти вещества;

в) получение кислот, солей и оснований, опирающееся на взаимодействие их между собой, а также получение солей при взаимодействии кислот с металлами и основными окислами и получение окислов прямым и косвенным способами.

Разумеется, эти предвосхищения должны подтверждаться эмпирическими данными, добытыми экспериментальным путем или сообщенными учителем. Развитие творческого подхода в изучении веществ составляет одну из важных задач преподавания химии. Поэтому прогноз химического состава и химических свойств веществ должен найти себе место как при изучении новых веществ, так и при решении различных количественных задач, например: «Какой качественный и количественный состав должен иметь азотнокислый кальций», «Какими тремя способами можно получить сернокислую медь», «Какие химические свойства имеет фосфорная кислота. Напишите уравнения реакций. Вычислите весовые отношения, в которых взаимодействуют и получаются вещества».

Свойства изученных веществ обязательно сравниваются между собой. Нахождение сходства и отличия в свойствах веществ имеет большое значение как подготовка к последующему усвоению периодического закона.

В IX-X классах в связи с расширением круга знаний, на основе которых изучаются вещества, подход, метод изучения их значительно расширяется и углубляется. Огромную роль здесь играют следующие обстоятельства: а) ознакомление учащихся с понятиями грамм-атом и грамм-молекула, грамм-молекулярный объем и расширение на этой основе стехиометрических расчетов; б) изучение производственных способов получения веществ; в) ознакомление учащихся с естественными группами химических элементов, закономерностями изменения свойств простых веществ, а также форм и свойств соединений, образуемых этими элементами.

До изучения периодической системы химических элементов учащиеся могут предсказывать химический состав, способы по лучения и химические свойства многих веществ из числа изучаемых в IX классе, опираясь на знание общих химических свойств окислов, кислот, оснований и солей и общих способов их получения. В этом заключается творческий подход к изучению веществ. Усилению этого подхода содействует изучение научных принципов химического производства, а также решение количественных и качественных задач, в особенности экспериментальных задач различных типов и видов: получение и распознавание веществ, разделение смесей, объяснение химических реакций, предвидение характерных свойств веществ и т. д.

После изучения периодической системы Д. И. Менделеева и потом теории строения атомов и ионной теории происходит резкое углубление творческого подхода к изучению веществ Теперь вещества изучаются с точки зрения общей связи химических элементов, выраженной в периодическом законе, а их химические свойства - с электронно-ионной точки зрения. Учащиеся могут предугадывать свойства простых веществ, а также формы и свойства их соединений, более глубоко понимать характер химической связи элементов в соединениях, а также химические свойства и получение веществ.

В этих классах следует показать учащимся, что противоречивая природа атомов (они состоят из ядра, имеющего положи тельный заряд, и электронов, несущих отрицательные электрические заряды), а также периодическое изменение строения их обусловливает особенности свойств веществ и их превращений

Представляется возможным также показать скачкообразное образование веществ нового качества путем прибавления или убавления атомов в молекулах, а также наличие в химических реакциях и веществах противоположных тенденций. На примере кислорода и озона, сернистого газа и серного ангидрида, сернистой и серной кислот, закиси, окиси и двуокиси азота и других веществ учитель разъясняет, что накопление атомов в молекулах обязательно ведет к образованию качественно новых веществ.

Кислоты и основания, окислители и восстановители, основные, кислотные и амфотерные окислы и другие вещества являются хорошими примерами, иллюстрирующими наличие в веществах противоположных тенденций.

Систематическое наблюдение учащимися изменения качества веществ в связи с изменением числа атомов в молекулах, постоянный показ противоположных тенденций в веществах и их химических свойствах способствует накоплению фактов, необходимых для формирования диалектико-материалистического мировоззрения.

В XI классе при изучении органической химии подход к изучению веществ все более расширяется и углубляется. Знакомство со структурной теорией открывает возможность изучать структуру вещества, а знакомство с органическими соединениями - не только отношение изучаемых веществ к неорганическим, но также и к органическим соединениям. Возникает возможность определять структуру веществ исходя из их химических свойств, предсказывать химические свойства исходя из строения веществ, и прослеживать их генетическую связь, опираясь на знание химических свойств и строения.

Так постепенно все новые и новые знания входят в состав творческого метода овладения химической наукой.

Сказанное выше о постепенном расширении и углублении подхода к изучению веществ может быть представлено в виде таблицы (табл. 11).

Нетрудно обнаружить, что здесь в химических терминах и суждениях выражен и в посильной мере применяется диалектико-материалистический подход к изучению вещества: конкретное рассмотрение вещества, ознакомление с составными частями его и связями этих частей между собой, изучение главных существенных и закономерных связей и отношений данного вещества к другим веществам и к физическим факторам (химические свойства), ознакомление с переходом вещества в качественно новые вещества при химических реакциях, рассмотрение способов получения и практического применения вещества, показ исторического характера химических знаний, их постепенного расширения и углубления, разъяснение роли практики как определителя знаний человека и критерия истины.

Таблица 11

Постепенное изменение подхода к изучению веществ

1. Физические свойства (физическое состояние, цвет, запах, вкус, удельный вес, молекулярный вес и др.)

То же и, кроме того, вес грамм- атома, грамм- молекулы, грамм- молекулярный объем

То же и, кроме того, вес 1 л газа при нормальных условиях

2. Химический состав. Первые попытки экспериментального доказательства химического состава; предвидение состава некоторых веществ (например, окислов металлов, солей, оснований); исходя из валентности элементов и остатков (водного и кислотных)

То же и, кроме того, предвидение состава окислов, оснований и солей, исходя из валентности элементов и остатков (водного и кислотных). Расширение экспериментального доказательства состава веществ, опираясь на отдельные характерные реакции их

То же и, кроме того, предвидение форм соединений исходя из положения элемента в периодической системе. Разъяснение характера химической связи элементов в соединении исходя из строения атомов и свойств элементов

То же и, кроме того, изучение структуры веществ и предвидение ее исходя из валентности элементов и химических свойств веществ

3. Химические свойства:

отношение к воде, к кислороду, водороду, углю, металлам, к окислам металлов, основаниям, кислотам, к нагреванию и электрическому току; объяснение этих свойств с точки зрения атомномолекулярной теории; первые попытки предвидения химических свойств металлов, кислот и других веществ

То же и, кроме того, отношение к солям и кислотным окислам- расширение предвидения химических свойств веществ, опираясь на знание общих химических свойств оснований, кислот и солей; прослеживание генетических связей неорганических веществ

То же и, кроме того, предвидение свойств простых веществ и химических соединений элементов исходя из положения их в периодической системе, объяснение химических свойств веществ с электронноионной точки зрения; изменение свойств веществ в связи с прибавлением и убавлением атомов в молекулах; противоречивый характер свойств веществ в связи с противоречивым характером строения составляющих их элементов; изменение свойств веществ под воздействием среды

То же и, кроме того, отношение вешеств к органическим соединениям, объяснение химических свойств вешеств с точки зрения структурной теории и предвидение свойств веществ исходя из их строения; прослеживание генетических связей органических веществ

4. Физиологическое действие

5. Сходство

данного вещества с другими веществами и отличие его от этих веществ.

Г Отнесение веществ к известным учащимся классам

То же и, кроме того, изомерия и гомология

6. Нахождение веществ

в природе и посильное объяснение форм нахождения исходя из химических свойств веществ

7. Применение веществ

в промышленности, в сельском хозяйстве, и быту. Народнохозяйственное значение их.

8. Получение веществ, объяснение реакций получения веществ с точки зрения атомномолекулярной теории; предвидение способов получения некоторых веществ (например, окислов и солей)

То же и, кроме того, предвидение способов получения отдельных окислов, кислот, оснований и солей исходя из знания общих способов получения их; прослеживание генетических связей неорганических веществ

То же и, кроме того, получение некоторых веществ на производстве; предвидение способов получения аналогов и их соединений исходя из знания способов получения простых и сложных веществ одного из элементов данной естественной группы периодической системы, а также химических свойств этого элемента; объяснение реакций получения веществ с электронно-ионной точки зрения

То же и, кроме того, предвидение способов получения органических веществ на основании их общих свойств и генетических связей; прослеживание генетических связей органических веществ

9. История открытия и исследования веществ; роль производственной практики в этом деле; приоритет русских ученых в открытии и исследовании веществ

Уже в VII классе при изучении кислорода следует познакомить учащихся с подходом химии к изучению веществ, показав, что этот подход является одновременно и планом изучения. Тут же полезно записать его в тетради и вывесить в виде таблицы в кабинете.

Экспериментальные методы исследования структуры кристаллов Определение строения веществ и материалов, т. е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов) проводят различными методами. Количественную информацию о строении соединений в кристаллическом состоянии дают дифракционные методы: - рентгеновский структурный анализ, - электронография, - нейтронография. Они основаны на изучении углового распределения интенсивности рассеиваемого исследуемым веществом излучения - рентгеновского, потока электронов или нейтронов. . 1

В основе дифракционных методов лежит явление дифракции (когерентного рассеяния) рентгеновских лучей, электронов и нейтронов на кристаллической решетке твердых тел. Процесс поглощения энергии падающего излучения и отдачи этой энергии при испускании волны той же длины называется когерентным рассеянием. Волны, проходя через кристаллическое вещество, испытывают дифракцию, т. к. кристаллическая решетка со средними межатомными расстояниями порядка 10 -10 м является для них дифракционной решеткой. Длина волны падающего излучения при этом должна быть сравнима с этими межатомными расстояниями. 2

В настоящее время в результате систематических структурных исследований накоплен достаточно обширный материал по определению структуры самых различных веществ. Эти данные позволяют установить ряд соотношений между: - химическим составом твердого тела, - характером сил межатомного взаимодействия в нем, - пространственным расположением этих атомов, - физическими свойствами. Закономерности в строении кристаллов, установленные с помощью структурного анализа, часто оказываются настолько общими, что могут быть использованы при анализе еще не исследованных веществ. Это во многих случаях позволяет построить модели структуры, что облегчает задачу структурного исследования и сводит ее к проверке правильности той или иной модели. 3

Во всех дифракционных методах на исследуемый объект направляют монохроматический пучок и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически или с помощью счетчиков. По дифракционной картине можно в принципе восстановить атомную структуру вещества. Если дифракционная картина на пленке представляет собой набор точек, то твердое тело находится в состоянии монокристалла. Если она является набором концентрических колец (на плоскую пленку) – поликристалла. Если размытые (диффузные) кольца (гало), то тело находится в аморфном состоянии. По распределению и величине интенсивности дифракционных максимумов можно рассчитать положения атомов, т. е. определить структуру. 4

Теория, описывающая связь картины упругого рассеяния с пространственным расположением рассеивающих центров, для всех излучений рентгеновского, потока электронов или нейтронов одинакова. Однако, поскольку взаимодействие разного рода излучений с веществом имеет разную физическую природу, конкретный вид и особенности дифракционной картины определяются разными характеристиками атомов. Поэтому различные дифракционные методы дают сведения, дополняющие друга. 5

Основы теории дифракции. Плоскую монохроматическую волну с длиной волны λ и волновым вектором k 0, где | k 0| = 2π/ λ , можно рассматривать как пучок частиц с импульсом р, где |р| = h/λ; h - постоянная Планка. Амплитуда F волны (с волновым вектором k), рассеянной совокупностью из n атомов, определяется уравнением: где вектор s = (k - k 0)/ 2π, s = 2 sinθ/λ, 2θ - угол рассеяния, fj(s) - атомный фактор, или фактор атомного рассеяния, то есть функция, определяющая амплитуду рассеяния изолированным j-м атомом (или ионом); r j - его радиус-вектор. 6

Аналогичное выражение можно записать, если считать, что объект объемом V обладает непрерывной рассеивающей плотностью ρ(r): По такой же формуле рассчитывают и атомный фактор f(s); при этом ρ(r) описывает распределение рассеивающей плотности внутри атома. Значения атомного фактора специфичны для каждого вида излучения. Рентгеновское излучение возникает при взаимодействии катодных лучей (потока электронов, движущихся от анода к катоду) с веществом анода. 7

Рентгеновские лучи рассеиваются электронными оболочками атомов. Атомный фактор fр при θ = 0 численно равен числу электронов Z в атоме, если fр выражен в так называемых электронных единицах, т. е. в относительных единицах амплитуды рассеяния рентгеновского излучения одним свободным электроном. С увеличением угла рассеяния атомный фактор fр уменьшается. Рассеяние электронов определяется электростатическим потенциалом атома φ(r) (r - расстояние от центра атома). Атомный фактор для электронов fэ связан с fр соотношением: где е - заряд электрона, m - его масса. 8

Абсолютные значения fэ (~10 -8 см) значительно больше, чем fр (~10 -11 см), т. е. атом рассеивает электроны сильнее, чем рентгеновские лучи; fэ уменьшается с ростом sinθ/λ, более резко, чем fр, но зависимость fэ от Z слабее. Интенсивность дифракции электронов примерно в 106 раз больше, чем для рентгеновских лучей. Нейтроны рассеиваются ядрами атомов (фактор fн), а также благодаря взаимодействию магнитных моментов нейтронов с отличными от нуля магнитными моментами атомов (фактор fнм). Радиус действия ядерных сил очень мал (~10 -6 нм), поэтому величины fн практически не зависят от θ. Кроме того, факторы fн не зависят монотонно от атомного номера Z и, в отличие от fр и fэ, могут принимать отрицательные значения. По абсолютной величине fн ~10 -12 см. 9

Интенсивность дифракции нейтронов примерно в 100 раз меньше, чем для рентгеновского излучения. Преимущество метода в том, что с его помощью выявляется различие атомов с близкими порядковыми номерами, что трудно сделать методами рентгенографии и электронографии. Интенсивность I(s) рассеяния кристаллом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)|2. Экспериментально можно определить лишь модули |F(s)|, а для построения функции рассеивающей плотности ρ(r) необходимо знать также фазы φ(s) для каждого s. Тем не менее, теория дифракционных методов позволяет по измеренным I(s) получить функцию ρ(r), т. е. определить структуру веществ. При этом лучшие результаты получают при исследовании кристаллов 10

Рентгеноструктурный анализ монокристаллов и порошков Рентгеновский структурный анализ (РСА) основан на дифракции рентгеновских лучей, проходящих через монокристалл и возникающей при взаимодействии с исследуемым образцом рентгеновского излучения длины волны около 0, 1 нм. Используют главным образом характеристическое рентгеновское излучение, источником которого служит, как правило, рентгеновская трубка. Структурный анализ обычно включает получение экспериментальных данных и их математическую обработку. Прибором для РСА служит дифрактометр, который включает источник излучения, гониометр, детектор и измерительно-управляющее устройство. 11

Гониометр служит для установки (с точностью около 13 угловых секунд) исследуемого образца и детектора в нужное для получения дифракционной картины положение. Детекторы представляют собой сцинтилляционные, пропорциональные или полупроводниковые счетчики. Измерительное устройство регистрирует (непрерывно или по точкам) интенсивность гониометр рентгеновских дифракционных. максимумов (отражений, рефлексов) в зависимости от угла дифракции - угла между падающим и дифрагированным лучами 12

С помощью РСА исследуют поликристаллические образцы и монокристаллы металлов, сплавов, минералов, жидких кристаллов, полимеров, биополимеров, различных низкомолекулярных органических и неорганических соединений. В реальном теле, на которое направлено рентгеновское излучение, огромное количество атомов и каждый из них становится источником рассеянных волн. Энергия излучения рассеивается в разных направлениях с различной интенсивностью. Вид картины рассеяния будет зависеть от сорта атомов, расстояний между ними, частоты падающего излучения и ряда других факторов. Русский ученый Вульф и англичане, отец и сын Брегги, дали простое толкование интерференции рентгеновских лучей в кристаллах, объяснив ее отражением от атомных сеток. 13

Трехмерную решетку кристалла можно рассматривать как бесконечное множество совокупностей параллельных атомных плоскостей с межплоскостным расстоянием d. Пусть на кристалл под углом скольжения q, падает параллельный пучок монохроматических лучей с длиной волны l. . Лучи отражаются от параллельного поверхности семейства плоскостей с межплоскостным расстоянием d под таким же углом q. Параллельные отраженные лучи I и II интерферируют, т. е. усиливают и ослабляют друга. 14

Если их разность хода параллельных отраженных лучей I и II Δ=(АВ+ВС)-АD равна целому числу n длин волн l, то наблюдается интерференционный максимум. Условие возникновения такого максимума можно записать в виде 2 dhklsinθ= n λ. Это соотношение носит название закона Вульфа−Брэггов. Это соотношение является следствием периодичности пространственной решетки и не связано с расположением атомов в ячейке или в узлах решетки. 15

Условия Лауэ Это условия, при которых возникают интерференционные максимумы при рассеянии излучения на узлах кристаллической решетки. Выделим в кристалле узловой ряд в направлении оси x с расстоянием между узлами а. Если на такой ряд направить под произвольным углом φ 0 пучок параллельных монохроматических лучей с длиной волны λ , то интерференционный максимум будет наблюдаться только в направлениях, для которых все отражения от узлов усиливают друга. Это будет если разность хода между падающим и рассеянным каким-либо узлом ряда лучом Δ=AC-BD будет равна целому числу длин волн: 16

Для трех некомпланарных направлений условия Лауэ имеют вид где ψ0 и χ0 − углы падения рентгеновских лучей на узловые ряды, располагающиеся вдоль направлений соответственно, а k и l − соответствующие индексы интерференции. Интерференционное уравнение Лауэ и закон Вульфа−Брэггов 17 эквивалентны другу.

Таким образом, в каждом кристалле можно выделить совокупность периодически расположенных плоскостей, которые образованы расположенными в правильном порядке атомами кристаллической решётки. Рентгеновские лучи проникают внутрь кристалла и отражаются от каждой плоскости этой совокупности. В результате возникает множество когерентных пучков рентгеновских лучей, между которыми существует разность хода. Пучки интерферируют между собой подобно тому, как интерферируют световые волны на обычной дифракционной решётке, проходя через щели. При выполнении условий Лауэ и Вульфа - Бреггов каждая совокупность периодически расположенных плоскостей дает свою систему пятен - максимумов. Расположение пятен на фотопленке полностью определяется расстоянием между плоскостями d. 18

Падающие под произвольным углом q на монокристалл рентгеновские лучи с длиной волны λ в общем случае отражаться не будут. Чтобы выполнялись условия Лауэ или закон Вульфа−Брэггов, надо подобрать или длины волн, или углы падения. На основании этого подбора были разработаны три основных метода получения дифракционной картины: - Метод Лауэ, - метод вращения монокристалла, - метод порошка (Дебая - Шеррера). 19

Метод Лауэ Немонохроматический пучок рентгеновских лучей (электронов или нейтронов) направляется на неподвижно закрепленный монокристалл. Кристалл «выбирает» те длины волн, для которых удовлетворяется условие Вульфа−Брэггов. Рассеянные лучи дают на пленке точечные рефлексы, каждому из которых соответствует своя длина волны из полихроматического спектра. Каждое пятно на лауэграмме соответствует определенной плоскости решетки. Симметрия в 20 расположении пятен отражает симметрию кристалла.

21

Метод вращения монокристалла Кристалл вращают вокруг оси, которая перпендикулярна к направлению падающего монохроматического пучка рентгеновских лучей или нейтронов. Вокруг помещена фотопленка в цилиндрической кассете. При повороте кристалла различные атомные плоскости занимают такие положения, при которых отраженные от них лучи интерферируют. 22

Плоскости, параллельные оси вращения, дадут дифракционную картину в виде точек, расположенных вдоль прямой, проходящей через центр пленки и называемой нулевой слоевой линией первого рода. Плоскости, ориентированные наклонно по отношению к оси вращения, дадут рефлексы, образующие слоевые линии, находящиеся выше и ниже нулевой. Из расстояния между слоевыми линиями первого рода можно рассчитать кратчайшее расстояние между атомами, расположенными вдоль кристаллографического направления, параллельного оси вращения кристалла. В отличие от метода Лауэ, который служит для определения элементов симметрии кристаллов, метод вращения позволяет выяснить структуру кристалла, т. е. установить форму и периоды элементарной ячейки, а в некоторых случаях, найти координаты всех базисных атомов. 23

Метод порошка (Дебая - Шеррера) Исследование порошковых (поликристаллических) материалов в монохроматическом излучении. Число зерен (кристаллитов) с совершенно произвольной ориентировкой достаточно велико. Можно считать, что они имеют все возможные ориентировки и что все ориентировки равновероятны. Падающие лучи отражаются от тех кристаллитов, которые по отношению к направлению падающего пучка оказываются ориентированы так, что выполняется условие Вульфа. Брэггов. Два способа регистрации дифракционной картины: на фотопленку (фотометод) и с помощью счетчика (дифрактометрический метод). 24

Фотометод дифракционная картина на пленке выглядит как серия концентрических окружностей. Дифрактометр регистрирует картину в виде чередования кривой фона и максимумов интерференции. Последние возникают на определенных углах положения счетчика 2 q. По измеренному значению угла рассеяния q можно рассчитать межплоскостные расстояния для любого дифракционного максимума. 25 Fe 3 O 4 а –рентген; б – нейтроны.

Поликристаллические образцы получаются в результате спекания из -мельчённого в порошок кристаллического вещества. Изготовленный таким способом образец помещается на оси камеры, на боковые стенки которой помещается фотоплёнка. При облучении монохроматическим рентгеновским излучением поликристаллического образца из -за беспорядочной ориентации кристаллических плоскостей различных его составляющих возникают конусы направлений. Дифракционная картина (дебаеграмма) имеет вид колец или полос. Ее анализ позволяет определить основные элементы структуры кристалла. 26

Набор dhkl называют паспортом кристалла. Информация о межплоскостных расстояниях различных кристаллов оформлена в виде баз данных: JCPD, MINCRYST. Зная из эксперимента для данного образца значения межплоскостных расстояний dhkl и величины относительных интенсивностей отражений Iотн, можно во многих случаях установить тип вещества или его фазу. После получения дифракционной картины делается предположение о типе кристаллической структуры, определяются значения индексов полученных отражений, размеры элементарной ячейки, если известны химический состав и плотность материала, рассчитывают количество атомов в элементарной ячейке. По интегральной интенсивности дифракционных линий можно установить расположение атомов в элементарной ячейке. 27

В случае поликристаллических образцов структуру устанавливают методом проб и ошибок: к заранее известному или предполагаемому каркасу атомной структуры (например, содержащему только "тяжелые" атомы) добавляют неизвестные ранее детали и рассчитывают интенсивности максимумов, которые сравнивают затем с экспериментально полученными значениями. С помощью РСА исследуют поликристаллические образцы и монокристаллы металлов, сплавов, минералов, жидких кристаллов, полимеров, биополимеров, различных низкомолекулярных органических и неорганических соединений. 28

При изучении монокристалла (чаще всего в виде шарика диаметром 0, 1 -0, 3 мм) первым этапом определения структуры является индицирование, т. е. установление индексов (h k l) всех отражений, наблюдающихся на дифракционной картине данного кристалла. Процесс индицирования основан на том, что значения межплоскостных расстояний dhkl связаны со значениями периодов (a, b, c) и углов (α, β, γ) элементарной ячейки вполне определенными соотношениями (квадратичными формами). После проведения индицирования проводится определение периодов элементарной ячейки. По закономерному отсутствию некоторых отражений судят о пространственной группе симметрии кристалла. . 29

Индицирование дифракционной картины и определение периодов кристаллической решетки являются начальными этапами установления атомной структуры кристаллов, т. е. нахождения взаимного расположения атомов в элементарной ячейке Определение атомной структуры основано на анализе интенсивностей дифракционных максимумов. Интенсивность отражений I(h k l) пропорциональна квадрату модуля структурной амплитуды F(h k l), величина которой определяется значениями координат атомов в ячейке кристалла. По интенсивности отражений рассчитывают абсолютные значения структурных амплитуд F(h k l). Анализ структурных амплитуд позволяет определить 30 тип решетки Бравэ.

Интенсивности дифракционных лучей I(h k l) связаны с координатами атомов xj, yj, zj в элементарной ячейке соотношениями: где F(h k l)-коэффициенты Фурье, которые в РСА называют структурными амплитудами, Ккоэффициент пропорциональности, φ(h k l)-начальная фаза дифракционного луча, fj - фактор атомного рассеяния j-го атома; h, k, l - целые числа, характеризующие расположение граней и соответствующих им атомных плоскостей в кристалле (индексы дифракционных лучей); N- общее число атомов в элементарной ячейке; i=√-1. 31

Величину |F(h k l)| можно непосредственно вычислить из I(h k l), но значение φ(h k l) при этом остается неизвестным (проблема начальных фаз). Фазы структурных амплитуд (т. е. сдвиг фазы отраженной волны по отношению к падающей) в общем случае непосредственно из эксперимента определить нельзя. Существуют методы решения проблемы начальных фаз: - метод Паттерсона, используют при расшифровке структур соединений, содержащих наряду с легкими (Н, С, N, О) тяжелые атомы металлов, координаты которых определяют в первую очередь. Координаты легких атомов в элементарной ячейке устанавливают, рассчитывая распределение электронной плотности ρ(x, y, z). 32

Функцию электронной плотности представляют в виде ряда ρ(x, y, z) Фурье: где h, k, l - индексы отражающей плоскости, Fhkl = |Fhkl|exp соответствующая структурная амплитуда рассеянного излучения, φhkl - ее фаза. Электронная плотность есть плотность вероятности распределения электронов в атоме, молекуле, кристалле. Для построения функции ρ(х, у, z) используют экспериментально определяемые величины |Fhkl|. Обработка экспериментальных данных позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности. Положения максимумов функции ρ(x, y, z) отождествляют с положением атомов, а по форме максимумов судят о 33 тепловых колебаниях атомов.

После определения общего характера кристаллической структуры производят ее уточнение путем последовательных приближений значений теоретически рассчитанных структурных амплитуд к экспериментально определенным. Так уточняют, в частности координаты атомов (xj, yj, zj) и константы их тепловых колебаний. Критерий правильности определения структуры - фактор расходимости R. R = 0, 05: 0, 04 структура определена с хорошей точностью, R ≤ 0, 02 -прецизионно. 34

Атомную структуру представляют в виде набора координат атомов и параметров их тепловых колебаний. Из этих данных можно вычислить межатомные расстояния и валентные утлы с погрешностью 10 -3 - 10 -4 нм и 0, 2 -2° соответственно. Это позволяет более точно установить химический состав кристалла, тип возможных изоморфных замещений (достоверность и точность при этом зависит от атомного номера элемента), характер тепловых колебаний атомов и т. д. 35

Благодаря прецизионной обработке экспериментальных данных можно исследовать распределение электронной плотности между атомами. Для этого строят функцию деформационной электронной плотности, описывающую перераспределение электронов в атомах при образовании химической связи между ними. Анализ функции деформационной электронной плотности позволяет установить степень переноса заряда, ковалентность связи, пространственное расположение неподеленных пар электронов и т. д. 36

Метод рентгеноструктурного анализа (РСА) позволяет устанавливать: - стереохимические и кристаллохимические закономерности строения химических соединений различных классов, - корреляции между структурными характеристиками вещества и его физико-химическими свойствами, - получать исходные данные для углубленной разработки теории химической связи и изучения химических реакций, - анализировать тепловые колебания атомов в кристаллах, - исследовать распределение электронной плотности в кристаллах. 37

Электронография Исследования атомной структуры кристаллов можно проводить также методами, основанными на дифракции электронов. Электронография как метод изучения структуры кристаллов имеет следующие особенности: 1) взаимодействие вещества с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях толщиной 1 -100 нм; 2) fэ зависит от атомного номера слабее, чем fр, что позволяет проще определять положение легких атомов в присутствии тяжелых; 3) благодаря тому, что длина волны обычно используемых быстрых электронов с энергией 50 -300 кэ. В составляет около 5. 10 -3 нм, геометрическая интерпретация электронограмм существенно проще. 38

Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10 -300 э. В, λ 0, 10, 4 нм) - эффективный метод исследования поверхностей кристаллов: расположения атомов, характера их тепловых колебаний и т. д. Основным является метод на просвет, при этом используют дифракцию электронов высоких энергий (50 -300 кэ. В, что соответствует длине волны около 5 -10 -3 нм). 39

Электронографию проводят в специальных приборах электронографах, в которых поддерживается вакуум 105 -10 -6 Па, время экспозиции около 1 с, или в трансмиссионных электронных микроскопах. Образцы для исследований готовят в виде тонких пленок толщиной 10 -50 нм, осаждая кристаллическое вещество из растворов или суспензий, либо получая пленки вакуумным распылением. Образцы представляют собой мозаичный монокристалл, текстуру или поликристалл. Дифракционная картина - электронограмма - возникает в результате прохождения начального монохроматического пучка электронов через образец и представляет собой совокупность упорядоченно расположенных дифракционных пятен - рефлексов, которые определяются расположением атомов в исследуемом объекте. 40

Рефлексы характеризуются межплоскостными расстояниями d hkl в кристалле и интенсивностью I hkl, где h, k и l - миллеровские индексы. По величинам и по расположению рефлексов определяют элементарную ячейку кристалла. Используя данные по интенсивности рефлексов, можно определить атомную структуру кристалла. Методы расчета атомной структуры близки к применяемым в рентгеновском структурном анализе. Расчеты, обычно проводимые на ЭВМ, позволяют установить координаты атомов, расстояния между ними и т. д. Электронография позволяет: - проводить фазовый анализ вещества, - изучать фазовые переходы в образцах и устанавливать геометрические соотношения между возникающими фазами, 41 - исследовать полиморфизм.

Методом электронографии исследованы структуры ионных кристаллов, кристаллогидратов, оксидов, карбидов и нитридов металлов, полупроводниковых соединений, органических веществ, полимеров, белков, различных минералов (в частности, слоистых силикатов) и др. При изучении массивных образцов используют дифракцию электронов на отражение, когда падающий пучок как бы скользит по поверхности образца, проникая на глубину 5 -50 нм. Дифракционная картина в этом случае отражает структуру поверхности. Так можно изучать явления адсорбции, эпитаксию, процессы окисления и т. п. 42

Если кристалл обладает атомной структурой, близкой к идеальной, и дифракция на просвет или на отражение происходит на глубине ~ 50 нм или более, то получается дифракционная картина, на основании которой можно делать выводы о совершенстве структуры. При использовании электронов низких энергий (10300 э. В) проникновение идет на глубину всего в 1 -2 атомных слоя. По интенсивности отраженных пучков можно установить строение поверхностной атомной решетки кристаллов. Этим методом установлено отличие поверхностной структуры кристаллов Ge, Si, Ga. As, Mo, Au и других от внутренней структуры, т. е. наличие поверхностной сверхструктуры. Так, например, для Si на грани (111) образуется структура, обозначаемая 7 x 7, т. е. период поверхностной решетки в этом случае превышает период внутренней атомной структуры в 7 раз. 43

Электронная микроскопия Электронографию часто комбинируют с электронной микроскопией высокого разрешения, позволяющей получать прямое изображение атомной решетки кристалла. Изображение объекта восстанавливается по дифракционной картине и позволяет изучать структуру кристаллов с разрешением 0, 2 -0, 5 нм. Электронная микроскопия представляет собой совокупность электронно-зондовых методов исследования микроструктуры твердых тел, их локального состава и микрополей (электрических, магнитных и др.). Для этого используют электронные микроскопы - приборы, в которых для получения увеличенных изображений используют электронный пучок. 44

Различают два главных направления электронной микроскопии: трансмиссионную (просвечивающую) и растровую (сканирующую). Они дают качественно различную информацию об объекте исследования и часто применяются совместно. В электронных микроскопах электронный луч направленный пучок ускоренных электронов, применяется для просвечивания образцов или возбуждения в них вторичных излучений (например, рентгеновского). Между электродами электронной пушки создается ускоряющее напряжение, определяющее кинетическую энергию электронного луча. Наименьшее расстояние между двумя элементами микроструктуры, видимыми на изображении раздельно называется разрешающей способностью (разрешением). Оно зависит от характеристик электронных микроскопов, режима работы и свойств образцов. 45

Трансмиссионная микроскопия реализуется с помощью трансмиссионных (просвечивающих) электронных микроскопов, в которых тонкопленочный объект просвечивается пучком ускоренных электронов с энергией 50 -200 кэ. В. Электроны, отклоненные атомами объекта на малые углы и прошедшие сквозь него с небольшими энергетическими потерями, попадают в систему магнитных линз, которые формируют на люминесцентном экране (и на фотопленке) светлопольное изображение внутренней структуры. 46

Светлопольное изображение - увеличенное изображение микро-структуры, сформированное электронами, прошедшими через объект с малыми энергетическими потерями. Структура изображается на экране электроннолучевой трубки темными линиями и пятнами на светлом фоне. При этом удается достичь разрешения порядка 0, 1 нм (увеличение до 1, 5 х 106 раз). Трансмиссионная микроскопия обеспечивает также получение дифракционных картин (электронограмм), позволяющих судить о кристаллической структуре объектов и точно измерять параметры кристаллических решеток. В сочетании с непосредственными наблюдениями кристаллических решеток в высокоразрешающих трансмиссионных электронных микроскопах данный метод - одно из основных средств 47 исследования ультратонкой структуры твердого тела.

При дифракции в электронном микроскопе применяют другие специальные методы, например метод сходящегося пучка и нанодифракции тонкого луча. В первом случае получают дифракционные картины, по которым можно определять симметрию (пространственную группу) исследуемого кристалла. Второй метод дает возможность изучать мельчайшие кристаллы (неск. нм). Сканирующий электронный микроскоп 48

В зависимости от тонкой структуры .

В настоящее время для исследования строения органических широ,ко применяется изучение их инфракрасных, видимых и ультрафиолетовых спектров поглощения. Инфракрасные и комбинационные спектры связаны с колебательными и вращательными движениями (точнее, ядер ), видимые и ультрафиолетовые спектры обязаны своим происхождением электронным переходам.

Так как отдельным радикалам (например, ОН, NH 2 , NO 2 , СО, С 6 Н 5 и т. д.), а также отдельным связям внутри , (например, С=С, С≡С, С=О, С-Н и т. д.) соответствуют определенные характеристические частоты в инфракрасных, спектрах и спектрах комбинационного рассеяния (мало изменяющиеся от соединения к соединению), то по этим спектрам можно судить о наличии в тех или иных радикалов или связей.

Эффект комбинационного рассеяния, одновременно открытый в 1928 г. советскими физиками Г. С. Ландсбергом и Л. О. Мандельштамом и индийским ученым Ч. В. Раманом, заключается в том, что при освещении сильным источником монохроматического света (например, мощной ртутной лампой со светофильтром, пропускающим фиолетовую линию 4047 Å) в спектре рассеянного света наряду с линией, имеющей частоту ν 0 , падающего света, наблюдаются слабые линии - спутники, смещенные на равную величину в обе стороны, с частотами ν 0 -ν " и, ν 0 + ν" , ν 0 -ν" и ν 0 + ν" , ν 0 -ν"" и ν 0 + ν"" и т. д. Эти симметричные спутники, однако, отличаются по своей интенсивности: интенсивности линий с частотами, большими, чем ν 0 , значительно слабее, и наблюдение их очень затруднительно. Поэтому в, основном говорят обычно о системе спутников ν 0 -ν" ν 0 -ν" , ν 0 -ν" и т. д. Оказывается, что величины смещения частот (ν" , ν" , ν"" . . .) отвечают переходам данной от одного колебательного уровня к другому, т. е. отвечают собственным колебаниям, возникающим в . Эти величины смещения не зависят от частоты ν 0 падающего света.

Очень многие из задач, о которых выше шла речь, можно решать также при помощи инфракрасных спектров.


На рис. 55 видно, насколько различаются инфракрасные спектры при сравнительно небольшом изменении их строения. В инфракрасных спектрах, как и в спектрах комбинационного рассеяния, отдельным радикалам и связям отвечают определенные характеристические частоты, что часто позволяет выбрать для впервые полученного соединения наиболее правдоподобное строение. Кроме того, для получения инфракрасных спектров требуется меньше и времени, чем для снятия спектров комбинационного рассеяния. Поэтому некоторые задачи установления строения и часто проще решать методом инфракрасных спектров. Зато в большинстве случаев легче и тоньше производится при помощи спектров комбинационного рассеяния. Кроме того, многие характерные линии отдельных группировок и связей проявляются либо только в инфракрасных спект-

pax, либо в спектрах комбинационного рассеяния. Таким образом, эти два метода взаимно дополняют друг друга.

Более частое применение методов зарубежными химиками объясняется лишь тем, что в их странах не налажено производство достаточно совершенных для проведения точных исследований с помощью спектров комбинационного рассеяния.

Спектры поглощения в видимой и ультрафиолетовой области также позволяют решать задачи, названные выше. Однако поглощением в этой области спектра обладают не все , а главным образом характера и соединения, содержащие в большое число .